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The inverse problem of extracting a quantum mechanical potential from laboratory data is
studied from the perspective of determining the amount and type of data capable of giving a
unique answer. Bound state spectral information and expectation values of time-independent
operators are used as data. The Schrödinger equation is treated as finite dimensional and for
these types of data there are algebraic equations relating the unknowns in the system to the
experimental data (e.g., the spectrum of a matrix is related algebraically to the elements of the
matrix). As these equations are polynomials in the unknown parameters of the system, it is
possible to determine the multiplicity of the solution set. With a fixed number of unknowns
the effect of increasing the number of equations on the multiplicity of solutions is assessed.
In general, if the number of the equations matches the number of the unknowns, the solution
set is denumerable. A result on the solvability of polynomial equations is extended to the case
where the number of equations exceeds the number of unknowns. We show that if one has
more equations than the number of unknowns, generically a unique solution exists. Several
examples illustrating these results are provided.
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1. Introduction

Unlike the forward problem of determining the state of the system, the inverse
problem of determining parameters in the system (via observation of some functional of
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the state) is generally ill-posed in the Hadamard sense. One finds that, either the solution
does not exist, or the solution is not unique or, it is unstable with respect to errors in the
data. We assume there is no error in the data so that existence of a solution is assured.
For a particular system, classifying the type and amount of data to identify unknown
parameters (lumped or distributed) is of paramount importance. The identification al-
gorithm must be stable and the solution must be unique for it to be useful. Our interest
centers on the identification of the potential in quantum mechanical systems. A quantum
mechanical system is governed by Schrödinger’s equation and data is in the form of a
quadratic functional of the state (wavefunction).

The determination of the potential within the Born–Oppenheimer approximation is
generally pursued by two different approaches: (1) performab initio quantum chemistry
calculations and (2) the inversion of appropriate experimental data. High quality com-
putational quantum chemistry approaches to produceab initio potentials are limited to
relatively small systems of a few atoms and these potentials often do not have the accu-
racy to explain modern laser-spectroscopic data. On the other hand, most of the existing
numerical procedures to extract potentials from laboratory data may be characterized
as parameter-fitting [1,2]. Direct inversion methods exist for special problems: for ex-
ample, the Rydberg–Klein–Rees (RKR) [3] method can extract potentials for diatomic
molecules from spectroscopic data. A method of inversion for excited state potentials
using spectroscopic data and knowledge of the ground state potential is presented in [4].
The identification of the coefficient functionq(x) in a Sturm–Liouville problem

−y′′ + q(x)y = λy,
y′(0)− ay(0)= 0,

y′(1)+ by(1)= 0,

(1)

using complete spectral information{λi}∞i=1 is a well-known inverse problem. It is
known [5,6] that this spectral information is insufficient to retrieve the potential uniquely
unless the functionq is symmetric with respect to mid-point of the interval[0,1]. How-
ever, two sets of spectra obtained by changing the boundary conditions (i.e., changinga

andb) is sufficient to recoverq uniquely [7–10]. The finite-dimensional version of this
inverse eigenvalue problem aims to construct the diagonal matrixV from knowledge of
the spectrum of the matrixH0+V , whereH0 is a real Hermitian matrix [11–14]. A sin-
gle spectrum again is insufficient to determine the matrixV , and additional data must be
incorporated for a unique inversion. Expectation value data of observable operators may
be exploited for this purpose, including time-dependent data arising from starting in a
non-stationary initial state. Exploration of this issue is the main motivation of the paper.

We assume that the system is restricted to bound-state dynamics, i.e., spectrum is
discrete and finite. The Hamiltonian of the system is represented in a basis where the
potential matrix is diagonal. We assume that spectroscopic information is available and
also that we can measure the expected value of appropriate observables in a bound-state
or in a superposition of bound states. This latter data augmentation consists of time-
dependent expectation values. Various cases will be considered using different types of
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data. Since the number of unknowns is fixed, the goal is to assess whether this augmen-
tation is capable of reducing the multiplicity of solutions to one. When only spectral data
is used the number of polynomial equations matches the number of unknowns. It may
be shown that generically the solution set is not unique when the number of equations
matches the number of unknowns [11]. We will show that if the number of equations
exceeds the number of unknowns, then the multiplicity of the solution is almost always
reduced to one. The method presented here can classify the type and amount of data
in relation to the number of unknowns. The unknowns are those of the potential matrix
and/or an eigenvector. Extracting an eigenvector and its eigenvalue will also determine
the potential matrix elements, since the latter is assumed to be diagonal.

The paper is organized as follows. Section 2 formulates the inverse problem. We
present a theorem [11] concerning the multiplicity of the solution set of a polynomial
system of equations and introduce a lemma to generalize and extend the theorem for our
purposes. The theorem and lemma will be employed to indicate what kind and amount
of data may be used for inversion to provide a unique solution. The conditions stated in
the lemma must be strictly satisfied for its rigorous application to the inverse problem.
Several examples are considered with different types of data. Section 3 addresses error
analysis and numerical issues as experimental data inevitably contains error. Conclud-
ing remarks and future perspectives are presented in section 4. Finally, in the context
of dynamic computer vision, Holt and Netravali [15–17] follow a similar approach to
that taken here. In principle, other inverse problems that reduce to solving polynomial
equations could also be analyzed with the same tools exploited in this work.

2. Inverse problem and the identification algorithm

Consider the time-dependent Schrödinger equation:

i
∂|ψ(t)〉
∂t

= (H0+ V )
∣∣ψ(t)〉,∣∣ψ(0)〉= |ψ0〉,

(2)

with h̄ = 1. H0 andV represent the kinetic and potential energy operators, respec-
tively. The inverse problem is expressed as follows. Laboratory data is assumed avail-
able, which is a functional of the state|ψ(t)〉. The data may be either time-independent
(e.g., spectral data or the expectation values of time-independent operators in a particu-
lar eigenstate) or time dependent as the expectation value of an operator with respect to
|ψ(t)〉, where|ψ(0)〉 is not an eigenstate. We may construct algebraic equations relating
the data to the unknown potential. The state is projected into a finite-dimensional sub-
space spanned by an orthonormal set{|φk〉}nk=1. We assume that the state is adequately
described as residing in this subspace:

∣∣ψ(t)〉 =
n∑

k=1

ak(t)|φk〉. (3)
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This assumption implies that sufficienta priori information about the potential exists so
that we can deduce a suitable basis{|φk〉}nk=1 to support the state at all times of observa-
tion. The representation of equation (2) under this basis is

i �̇at = H �at , (4)

where

�at ≡
[
a1(t) a2(t) . . . an(t)

]
,

Hij = 〈φi |H0+ V |φj 〉, i, j = 1,2, . . . , n.
(5)

The inverse problem considered here seeks to deduce whether the data uniquely deter-
mines the unknown elements inV . V is assumed to be diagonal unless otherwise stated,
and this circumstance could arise either from physical considerations or due to the choice
of the basis{|φk〉}nk=1.

In the following analysis, inverting the potential reduces to solving a system of
nonlinear polynomial equations. The unknowns in these equations will be either the
unknowns of the potential or the coefficient vector�at . In either case we may denote
the vectorx ≡ [x1, x2, . . . , xn] as representing all of the unknowns and we have the
following equations

f1(x1, x2, . . . , xn)= d1,

f2(x1, x2, . . . , xn)= d2,
...

fk(x1, x2, . . . , xn)= dk,
(6)

wherek � n and fi(·) :Rn → R
k. The quantitiesdi on the right-hand side of the

equations are the data. We seek to determine under what conditions the solution to the
above system is unique. When the unknowns are those of the potential, then the solution
of (6) will directly yield the potential. If the unknowns are the coefficient vector�at
at different times, the potential is determined by using equation (4). If the number of
unknowns exactly matches the number of equations, then the following theorem [11]
explains why the solution is a subset ofRn rather than a single point.

Let f (x) be a polynomial overCn, then dimensional complex Euclidean space.
Denote byx the point(x1, x2, . . . , xn) inCn. By d(f )we denote the degree off , i.e., the
degree of the polynomialf (tx1, . . . , txn) with respect tot . The principal partfπ(x) is
the highest homogeneous term appearing inf (x). That is,fπ is uniquely determined by
the conditions

fπ(tx1, . . . , txn)= td(f )fπ(x1, . . . , xn), (7)

d(f − fπ) < d(f ) (8)

for any nonconstant polynomialf ; if f ≡ constant, thenfπ ≡ 0. Define

φ= (f1, . . . , fn),

φπ = (f1π, . . . , fnπ ).
(9)
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The degreed(φ) of φ is defined by

d(φ) =
n∏

j=1

d(fj ). (10)

The following theorem provides a sufficient condition for the solvability of the system

φ(x) = d. (11)

Theorem. Let φ = (f1, . . . , fn) be a polynomial map ofCn into Cn. Assume that the
system

φπ(x) = 0 (12)

has only a trivial solutionx = 0. Then for any givend = (d1, . . . , dn) the system (11)
is always solvable. The number of distinct solutions is always finite and does not ex-
ceedd(φ). Moreover, for almost alld the number of distinct solutions is exactlyd(φ).

Remark. If φ :Rn → R
n whereRn is then-dimensional Euclidean space, the system

φ(x) = d may not have a solution at all, i.e., the equations are inconsistent. However, if
the system has at least one solution, the number of solutions is at mostd(φ). In the ideal
case of error-free data, there is at least one solution to the equations above since the data
in the laboratory is generated by the underlying potential. Thus we always are assured
of the existence of solutions in this case; the issue of concern is the possible multiplicity
of solutions. It would be desirable if the number of solutions to the system (11) could
be reduced to just one by adding a single observation equation. The following lemma
states under what conditions and in which sense this operation reduces the solution set
to a single unique point inRn.

Lemma. Let ψ = (f1, f2, . . . , fn+1) be a polynomial map ofRn into Rn+1. Suppose
that the only solution to the system

ψ(n)
π (x) = 0 (13)

is the null solution, whereψ(n)
π (x) is the principal part of the polynomial vector function

ψ(n)(x) = (f1, f2, . . . , fn). Suppose further that the system

ψ(x) = d (14)

has at least one solution. Then the system (14) has no other solution for almost all
polynomial functionsfn+1 :Rn→ R.

Proof. Since the systemψ(x) = d is consistent, it has at least one solutionX0 ∈ Rn.
Let C = {X0, X1, . . . , XN } be the solution set of the firstn equations of the system (14).
The claim is that in the space of all polynomial mappingsfn+1 :Rn → R which sat-
isfy fn+1(X0) = dn+1, the subspace of functions which also pass through any other
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point in C has measure zero. We proceed as follows to prove this statement. For
Y = (x1, x2, . . . , xn), fn+1(Y ) is written as a linear combination of the monomials:

fn+1(x1, x2, . . . , xn) =
∑

i1+i2+···+in�m
ai1i2...inx1

i1x2
i2 · · · xnin . (15)

We have

M = 1+
m∑
k=1

n(n+ 1) · · · (n+ k − 1)

k! = 1+ (m+ n)!
m!n!

numbersai1i2...in . Defineα ∈ RM as the vector of coefficents above andβY ∈ RM as the
vector of monomialsx1

i1x2
i2 · · · xnin so that

fn+1(Y ) = α · βY , (16)

where(·) denotes the inner product in the Euclidean spaceR
M . Note thatfn+1(X0) =

α · βX0 = dn+1. Now, define

!0=
{
α ∈ RM | α · βX0 = dn+1

}
,

!j =
{
α ∈ !0 | α · βXj

= dn+1
}
, j = 1,2, . . . , N,

(17)

with N + 1 as the cardinality of the setC. !0 is a hyperplane inRM and being so, it is
an(M − 1)-dimensional differentiable submanifold ofRM and each!j is a hyperplane
in !0 and being so it is an(M − 2)-dimensional submanifold ofRM . From differential
geometry [18] we know that ifA ⊂ B is a submanifold of codimension greater than zero,
thenA has measure zero inB. Since each!j ⊂ !0 is of codimension 1 in!0 then!j ,
j = 1,2, . . . , N , has measure zero in!0, and thus so does their arbitrary intersections.

This result shows that for a polynomial that belongs to space!0, the chance of it
being in any subspace!j (or in their arbitrary intersections) is essentially zero. This
is equivalent to saying that system (14) has a unique solution for almost all polynomial
functionsfn+1 :Rn→ R.

The above lemma states that for the nonlinear polynomial system of equations
defined above (n polynomials inn unknowns), if the number of solutions is finite, then
adding another consistent polynomial equation (which is independent of the original set)
shrinks the number of solutions to one with overwhelming likelihood. Thus, the set of
functions which make the above system have multiple solutions has zero measure in the
larger space of the functions which make the above system consistent. The key issue is
for there to be a finite number of solutions to the firstn equations, and then the number
of solutions will be reduced to one for almost all consistent polynomial equations added
as the last equation.

Armed with the theorem and lemma, we have a powerful criterion to judge whether
a set of polynomial inverse equations have multiple solutions or not. In each case below
we specify the data and analyze whether the potential (or equivalently an eigenstate) may
be inverted from it. We used numerical searching algorithms to find the solutions. In no
case did we find a false solution. However, as with any numerical algorithm, at times the
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iterative procedure may not converge. In all the cases the physical system is assumed to
be of finite dimension or the expansion in equation (3) is adapted to this effect.�

2.1. Expectation values in a specific eigenstate as data

The followingn+ 1 time-independent datadk is assumed available:

〈ψ |Ok|ψ〉 = dk, k = 1,2, . . . , n+ 1, (18)

whereψ denotes one of the eigenstates of the HamiltonianH0 + V and {Ok}n+1
k=1 are

independent Hermitian operators. We also assume that the eigenvalueE corresponding
to this eigenstate is known. Asψ is an eigenstate, the coefficients{a'}n'=1 are constants.
Denoting byÕk the matrix representation of the operatorOk in the basis{|φk〉}nk=1 and
defining the real vector�a = [a1 a2 . . . an] we get the following equations:

�a†Õ1�a= d1,

�a†Õ2�a= d2,
...

�a†Õn+1�a= dn+1.

(19)

Here † denotes the transpose operation. The matrices must be independent, otherwise
the number of equations can be reduced. Note that one of the matrices is taken as the
identity matrix to specify the norm of the eigenstate〈ψ |ψ〉 = 1. This relation assures
that equation (12) is satisfied which, in turn, guarantees that the system (19) has a finite
number of solutions. So, we haven+ 1 consistent equations inn variables. The lemma
says that for almost all independent Hermitian operatorsOn+1, the system (19) has a
unique solution.

For illustration we numerically tested the following example. Six random 5× 5
Hermitian matricesÕk, k = 1,2, . . . ,6, were chosen and a random normalized real
vector �a of dimension five generated the data{d1, d2, . . . , d6}. Then, by construction
the data set is consistent and there is at least one solution to the observation equations.
Powell’s method (see [19, chapter 10]) was used as a nonlinear algorithm to search
for the solutions to these equations. Fifteen random initial conditions were chosen to
initiate numerical searches. Each search either found the solution�a or ended up with
a vector which did not solve the system of equations. In no case was another solution
found which satisfied the equations. The above procedure starting with a new random
set of six matricesOk was repeated 25 times. In all cases the same conclusion was
found. Those cases where no solution at all was found indicate a failure of the numerical
algorithm since we know that�a is always a solution. The lack of finding a false solution
demonstrates the lemma statement that such false solutions, if they exist, do so with zero
measure.
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2.2. Time-dependent expectation values as data

Consider time-dependent data generated byn + 1 observable expectation values
where the initial state is assumed to be a mixture of at least two eigenstates. The equation
system (19) becomes:

�a†
t Õ1�at = d1(t),

�a†
t Õ2�at = d2(t),

...

�a†
t Õn+1�at = dn+1(t).

(20)

This system satisfies the condition in the theorem and lemma since the norm of the state
is always unity. Ast only acts as a parameter in these equations one can determine coef-
ficient vector�at at any time during the observation interval[0, T ] uniquely and use this
to invert the potential. In principle an inversion at timest andt + δt would yield |ψ(t)〉
and|ψ(t + δt)〉 such that|ψ̇(t)〉 could be determined as well, asδt → 0 (see section 2.4
below). This information at any timet should permit full estimation ofV by substitution
into equation (2). It is evident thatn+ 1 such equations over time carry excess informa-
tion to identify the potential uniquely. This redundancy of information can be valuable,
as at any timet we expect that|ψ(t)〉 will only have significant amplitude in a localized
spatial region. Thus, one can only expect to determineV reliably in that region. The full
scope of the potential could be resolved by concatenating many such pieces ofV . This
case also does not require that the potential matrix be diagonal in the chosen basis.

2.3. Augmented spectral data

Spectral data is often relatively easy to obtain and it is typically very accurate.
Suppose the spectrumE = {E1, E2, . . . , En} of the matrix(H0 + V ) is available; the
goal is to determine if this data can uniquely identify the potential function . This case
is referred to as the additive inverse eigenvalue problem [11,13], and it is known that
there is not a unique solution if the matrixV is diagonal (e.g., considerV evaluated at
discrete points in its diagonal coordinate representation). The theorem states that there
are up ton! solutions. This number may be deduced from the fact that the characteristic
polynomial of the Hamiltonian matrix must be equal to the characteristic polynomial
of the eigenvalue matrix and this givesn polynomial equations inn unknowns of the
potential matrix with degrees from 1 ton. These equations satisfy the condition of
equation (12). Since spectral information is not enough to invert the potential we may
augment it with additional information to realize the inversion. We assume that the
additional data is one expectation value of an observable operator in one of the specified
eigenstates of the Hamiltonian. Below we show the generic uniqueness of the solution
to this extended system of equations using the lemma.
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Let fi(x1, x2, . . . , xn) be theith coefficient of the characteristic polynomial of the
matrixH0+V , wherex ≡ [x1, x2, . . . , xn] denotes the unknowns in the diagonal poten-
tial matrix. This gives the followingn equations:

f1(x1, x2, . . . , xn)=
n∑
i=1

Ei,

f2(x1, x2, . . . , xn)=
n∑

i �=j
EiEj ,

f3(x1, x2, . . . , xn)=
n∑

i �=j �=k
EiEjEk,

...

fn(x1, x2, . . . , xn)=
n∏
i=1

Ei.

(21)

The additional data isψ†Õψ = d, whereψ is an eigenvector associated with the known
eigenvalueE (i.e, one member of the setE1, E2, . . . , En). Then we have the following
additional equations:

ψ†ψ = 1,
(H0+ V )ψ =Eψ,

ψ†Õψ = d.
(22)

Regarding the elements of the vectorψ as additional unknowns, altogether we have 2n

unknowns with 2n + 2 nonlinear polynomial equations relating them with the experi-
mental data. These equations satisfy the condition in equation (12) of the theorem and
the lemma states that for almost all Hermitian operatorsÕ there is a unique solution to
the above system of data equations. As an illustration consider the following example:

H0 =




0.4 −0.2
−0.2 0.4 −0.2

. . .
. . .

. . .

−0.2
−0.2 0.4



,

V is diagonal with elements{1.1650 0.6268 0.0751 0.3516−0.6965}, Õ is diagonal
with elements{0.2500 1.0000 2.2500 4.0000 6.2500}, ψ = [0.2988 0.2309 0.4401
0.2331−0.7806]†.

The data in (22) was generated by the above entities. The resultant nonlinear equa-
tion system (21) and (22) was solved by a root-searching algorithm. The correct potential
is recovered starting from a wide range of initial guesses.
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2.4. Time-dependent data

In contrast to case 2.2, we now explore whether a unique inversion can be pro-
duced using the expectation value of a single observable with respect to a time-dependent
wavefunction. If the initial state is a mixture ofall the eigenstates we can decompose
the wavefunction as in (3) at all times. Then one can determine the eigenvalues from the
following data.Õ1 is a Hermitian operator:

d1(t) =
〈
ψ(t)

∣∣Õ1

∣∣ψ(t)〉. (23)

Fourier transforming equation (23) we get

F
{
d1(t)

} =∑
k,l

(
Õ1
)
kl
bkblδ

(
ω − (Ek − El)

)
, (24)

whereψ(0) = [b1 b2 . . . bn] andω is the frequency. If the spectral transitions are
non-degenerate, i.e.,

Ek − El �= Ei − Ej for any pair
{
(k, l), (i, j)

}
, (25)

then the eigenvalues can be determined up to a constant. The latter indeterminacy is of
no consequence since identifying the potential up to an additive constant is sufficient.
From the analysis in section 2.3 we conclude that potential can be retrieved with data
from equation (23) augmented by

d2 =
〈
ψ
∣∣Õ2

∣∣ψ 〉, (26)

where|ψ〉 in (26) is an eigenstate. Note that knowledge of the initial condition is not
necessary here.

2.5. Time-dependent data and knowledge of the initial state

If the initial wavefunction is a known mixture of theall bound-states, then we
can generate additional algebraic equations for the unknown elements of the potential
matrix. We will show that under these conditions we may obtain the potential with only
one set of time-dependent data,

d(t) = 〈ψ(t)∣∣Õ∣∣ψ(t)〉, ψ(0) = ψ0. (27)

As in section 2.4 by Fourier transforming this data we may determine the spectrum. This
information givesn equations in then unknowns of the diagonal potential matrix. To
generate the additional equation we take the derivative of the time-seriesd(t),

i ḋ(t) = 〈ψ(t)∣∣[H,O]∣∣ψ(t)〉, ψ(0) = ψ0, (28)

whereH = H0+ V and[H,O] = HO −OH . If ψ0 is a real function then

i ḋ(0) = 〈ψ0|[H,O]|ψ0〉 = 0. (29)
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In this case we may take one more derivative and get

−d̈(0) = 〈ψ0|
[
H, [H,O]]|ψ0〉 (30)

to give an additional quadratic equation for the unknowns of the potential. Since the
initial state is assumed known, the only unknowns in this last equation are those of the
potential. As an illustration consider the same example as in section 2.3 forH andO
with the initial condition being

ψ(0) = [0.6224−0.2748 0.1051−0.7031−0.1779]†. (31)

The data (27) was generated consistent with the initial conditionψ(0). The equations
were solved by a root-searching algorithm repeatedly starting with a random initial
guess. The correct potential is recovered when iterations converge.

3. Error analysis

There are two general sources of error in the inversion process discussed above.
First equation (3) was assumed to be an identity (i.e., the wavefunction at all times
could be represented in a finite dimensional basis so that there was no truncation error
involved). Second, the inversion scheme described in section 2 assumed that there is no
error in the data. The first of these error sources is difficult to assess, however, it can be
treated in principle by increasing the basis set until convergence is achieved. The second
case will be analyzed below. Since the inversion problem was reduced to finding the
unique solution to a system of polynomial equations, we may analyze the stability of the
solutions with respect to small perturbationsεk in the data:

f1(x1, x2, . . . , xn)= d1+ ε1,

f2(x1, x2, . . . , xn)= d2+ ε2,
...

fn+1(x1, x2, . . . , xn)= dn+1 + εn+1.

(32)

Each perturbation is of the same order, i.e.,εk ∼ O(ε) for a small parameterε. LetX0

be the desired unique solution andX0, X1, . . . , XN be the solutions to the firstn equa-
tions of the original unperturbed system. By the same reasoning presented in the proof,
generally there is no solution to the above system as the perturbation makes the system
inconsistent. However, we expect thatX0 almostsatisfies the equations. Thus we trans-
form the goal of finding an exact solution to a minimization problem over equation (32):

min
x

∥∥f (x)− d + ε∥∥, (33)

‖ · ‖ indicates the Euclidean norm in the appropriate space. IfX- solves (33), then∥∥f (X-
)− f (X0)

∥∥ � O(ε). (34)
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If the Jacobian matrix of the firstn equations is not ill-conditioned at the points
X0, X1, . . . , XN , thenX- will be inside an order-ε neighborhood of one of these points.
If X- is in the neighborhood ofX0, the system is stable with respect to perturbations. In
contrast consider whetherX- can be in the order-ε neighborhood of the pointXj , j �= 0,
which gives: ∥∥f (X0)− f (Xj)

∥∥ � O(ε). (35)

Inequality (35) is true for the firstn elements sincefi(Xj ) = fi(X0), i = 1,2, . . . , n.
However, it is not true for the last element since otherwisefn+1(X0) would be arbitrarily
close tofn+1(Xj), which is not true due to uniqueness of the solution to the unperturbed
system.

Thus, the solution to equation (33) will be close toX0 which is the unique solution
to the unperturbed system. This analysis shows that the inversion is stable with respect
to small errors in the data.

4. Conclusion and future perspectives

This paper addressed the problem of bound-state potential function inversion in
quantum mechanics where the potential is time independent. It is important to consider
what can be practically measured in the laboratory for inversion, and spectral data is
generally very accurate and readily available. In this paper we considered inversion with
both spectral data and time-dependent data which is the expectation value of an observ-
able. Although time-dependent data is currently more difficult to obtain, this situation
will likely improve. Large numbers of accessible observable operators is also a problem
that needs addressing. After projecting the wavefunction to ann-dimensional subspace,
the problem of inverting the potential reduced to solving a system of nonlinear polyno-
mial equations. If the solution to these equations is unique then the resulting potential is
unique. The main aim of the paper is to quantify the number and type of data that will
give rise to a unique solution. Forn polynomial equations inn unknowns the number
of solutions is finite if the system satisfies a condition stated in the theorem of section 2.
Adding another equation which is consistent with the rest of the equations will generi-
cally reduce the number of solutions to one. We showed that for a specified finite set of
points, if a polynomial passes through one of them, it is very unlikely that it will also
pass any other point in this set. This is shown in a measure-theoretic sense and details
are presented in the proof of lemma in section 2. If there is an abundance of data then
the uniqueness of the sought after potential is assured by adding extra measurements.

Several classes of inversion problems were analyzed in the paper. The first data
set presented in section 2.1 considered for then dimensional system was expectation
values ofn + 1 observables in a single eigenstate of the Hamiltonian along with the
corresponding eigenvalue for that state. It was shown that in this case the potential may
be extracted uniquely. The data set in section 2.2 was the expectation values ofn + 1
observables where the initial state is a mixture of the eigenstates rather than only one
of them. Although in principle the potential could be fully generated everywhere in
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this case, in practice the potential will likely only be extracted to reasonable accuracy
in the region sampled by the wavefunction during the observation interval. The data
set in section 2.3 is the spectral data augmented with the expectation of an observable
in an eigenstate of the Hamiltonian. The potential is extracted uniquely in the region
spanned by that eigenstate. The data set in section 2.4 was the expectation values of
two observables: the initial state was a mixture of eigenstates for the first observable
and it was a pure eigenstate for the second observable. The former data set is used to
extract eigenvalues when the non-degeneracy condition (25) is satisfied. Then, inversion
reduces to the same situation as in the previous problem. Lastly in section 2.5, we
considered the expectation value of one observable with an initial mixture state where
we also knew this initial state. Inversion is again shown to be unique by employing the
result of the lemma. An error analysis given in section 3 showed that a slight perturbation
in the data does not cause a large deviation in the solution if the polynomials behave
sufficiently well. This case is always true if the Jacobian of the firstn polynomials is
not ill-conditioned at the solutions to thesen equations. Note also that nothing is special
about the choice of the firstn polynomials, if any combination ofn equations satisfy this
requirement, the result mentioned above is true. For noise contaminated data we have
inconsistent set of equations. The task of finding a solution then becomes a minimization
problem.

The system analyzed in this paper involved inversion to extract the potential where
the Hamiltonian is time-independent. Introducing an external time-dependent field may
provide a means to aid in the inversion of the potential. As the system becomes time-
dependent the notion of spectral information is lost. However by adjusting this field by
design, time-dependent expectation data can be employed to invert potential. Control-
ling the system by an external electric field can be exploited [20] to track a prescribed
output. The external field is designed in such a way that the time-dependent expected
value of an observable is tracked. A similar paradigm can be used to invert potential.
The problem of quantifying the amount and best type of such time-dependent expecta-
tion data sets awaits further research. Although inversion to obtain the potential is an
important problem per se, its application to control of quantum dynamical systems is of
considerable interest: control of molecular motion with optical electric fields is an active
area of research [21]. One obstacle to achieving effective control is a serious lack of
information on the underlying Hamiltonian and in particular the intramolecular poten-
tial function describing the interaction among the atoms of the molecule. To realize the
control objective one can envision a sequential scheme in which a portion of potential is
identified and control theory is used to manipulate the dynamics of the system followed
by additional inversion and control until the final objective is met [22].
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